|
The architecture of iORbase.It includes retrieving and analysis sub-systems with four modules of iORpdb, iInteraction, iModelTM and iOdorTool. They are integrated together for retrieving and visualization the predicted iORs structures and interactions with pheromones by iORpdb and iInteraction modules respectively, or predicting the homology models and interactions for user queried iOR sequences or pheromones by iModelTM and iOdorTool respectively. Video introduction of iORbaseREFERENCESThe iORbase website citation: 1.Li, Q., Zhang, Y. F., Zhang, T. M., Wan, J. H., Zhang, Y. D., Yang, H., Huang, Y., Xu, C., Li, G. and Lu, H. M. (2023) iORbase: a database for the prediction of the structures and functions of insect olfactory receptors. Insect Science, doi: 10.1111/1744-7917.13162. The following references are resources or toolkits for producing the iORbase data: (Data resources) 1.Sayers, E.W., Beck, J., Bolton, E.E., Bourexis, D., Brister, J.R., Canese, K., Comeau, D.C., Funk, K., Kim, S., Klimke, W. et al. (2021) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res, 49, D10-D17. 2.Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B.A., Thiessen, P.A., Yu, B. et al. (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res, 49, D1388-D1395. 3.Mei, Y., Jing, D., Tang, S., Chen, X., Chen, H., Duanmu, H., Cong, Y., Chen, M., Ye, X., Zhou, H. et al. (2022) InsectBase 2.0: a comprehensive gene resource for insects. Nucleic Acids Res, 50, D1040-D1045. https://pubchem.ncbi.nlm.nih.gov 4.El-Sayed AM 2022. The Pherobase: Database of Pheromones and Semiochemicals. https://www.pherobase.com 5.Butterwick, J.A., Del Marmol, J., Kim, K.H., Kahlson, M.A., Rogow, J.A., Walz, T. and Ruta, V. (2018) Cryo-EM structure of the insect olfactory receptor Orco. Nature, 560, 447-452. (Genome resources) 6.Burke, G.R., Walden, K.K., Whitfield, J.B., Robertson, H.M. and Strand, M.R. (2014) Widespread genome reorganization of an obligate virus mutualist. PLoS Genetics, 10, e1004660. 7.Chen, W., Hasegawa, D.K., Kaur, N., Kliot, A., Pinheiro, P.V., Luan, J., et al. (2016) The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biology, 14, 110. 8.Clark, A.G., Eisen, M.B., Smith, D.R., Bergman, C.M., Oliver, B., Markow, T.A., et al. (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature, 450, 203–218. 9.Fu, Y., Yang, Y., Zhang, H., Farley, G., Wang, J., Quarles, K.A., et al. (2018) The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology. Elife, 7. 10.Gao, Q., Xiong, Z., Larsen, R.S., Zhou, L., Zhao, J., Ding, G., et al. (2020) High-quality chromosome-level genome assembly and full-length transcriptome analysis of the pharaoh ant Monomorium pharaonis. Gigascience, 9. 11.Harrison, M.C., Jongepier, E., Robertson, H.M., Arning, N., Bitard-Feildel, T., Chao, H., et al. (2018) Hemimetabolous genomes reveal molecular basis of termite eusociality. Nature Ecology & Evolution, 2, 557–566. 12.Karpe, S.D., Dhingra, S., Brockmann, A. and Sowdhamini, R. (2017) Computational genome-wide survey of odorant receptors from two solitary bees Dufourea novaeangliae (Hymenoptera: Halictidae) and Habropoda laboriosa (Hymenoptera: Apidae). Scientific Reports, 7, 10823. 13.Li, X., Fan, D., Zhang, W., Liu, G., Zhang, L., Zhao, L., et al. (2015) Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nature Communications, 6, 8212. 14.McKenzie, S.K. and Kronauer, D.J.C. (2018) The genomic architecture and molecular evolution of ant odorant receptors. Genome Research, 28, 1757–1765. 15.Mohanty, S. and Khanna, R. (2017) Genome-wide comparative analysis of four Indian Drosophila species. Molecular Genetics and Genomics, 292, 1197–1208. 16.Nygaard, S., Zhang, G., Schiøtt, M., Li, C., Wurm, Y., Hu, H., et al. (2011) The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming. Genome Research, 21, 1339–1348. 17.Park, D., Jung, J.W., Choi, B.S., Jayakodi, M., Lee, J., Lim, J., et al. (2015) Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing. BMC Genomics, 16, 1. 18.Patalano, S., Vlasova, A., Wyatt, C., Ewels, P., Camara, F., Ferreira, P.G., et al. (2015) Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies. Proceedings of the National Academy of Sciences of the United States of America, 112, 13970–13975. 19.Pearce, S.L., Clarke, D.F., East, P.D., Elfekih, S., Gordon, K.H.J., Jermiin, L.S., et al. (2017) Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biology, 15, 63. 20.Ranz, J.M., Maurin, D., Chan, Y.S., von Grotthuss, M., Hillier, L.W., Roote, J., et al. (2007) Principles of genome evolution in the Drosophila melanogaster species group. PLoS Biology, 5, e152. 21.Richards, S., Gibbs, R.A., Weinstock, G.M., Brown, S.J., Denell, R., Beeman, R.W., et al. (2008) The genome of the model beetle and pest Tribolium castaneum. Nature, 452, 949–955. 22.Sadd, B.M., Barribeau, S.M., Bloch, G., de Graaf, D.C., Dearden, P., Elsik, C.G., et al. (2015) The genomes of two key bumblebee species with primitive eusocial organization. Genome Biology, 16, 76. 23.Sanchez-Flores, A., Peñaloza, F., Carpinteyro-Ponce, J., Nazario-Yepiz, N., Abreu-Goodger, C., Machado, C.A., et al. (2016) Genome evolution in three species of Cactophilic Drosophila. G3 (Bethesda), 6, 3097–3105. 24.Shields, E.J., Sheng, L., Weiner, A.K., Garcia, B.A. and Bonasio, R. (2018) High-Quality Genome Assemblies Reveal Long Non-coding RNAs Expressed in Ant Brains. Cell Reports, 23, 3078–3090. 25.Smith, C.D., Zimin, A., Holt, C., Abouheif, E., Benton, R., Cash, E., et al. (2011) Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile). Proceedings of the National Academy of Sciences of the United States of America, 108, 5673–5678. 26.Standage, D.S., Berens, A.J., Glastad, K.M., Severin, A.J., Brendel, V.P. and Toth, A.L. (2016) Genome, transcriptome and methylome sequencing of a primitively eusocial wasp reveal a greatly reduced DNA methylation system in a social insect. Molecular Ecology, 25, 1769–1784. 27.Wallberg, A., Bunikis, I., Pettersson, O.V., Mosbech, M.B., Childers, A.K., Evans, J.D., et al. (2019) A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds. BMC Genomics, 20, 275. 28.Xiao, J.H., Yue, Z., Jia, L.Y., Yang, X.H., Niu, L.H., Wang, Z., et al. (2013) Obligate mutualism within a host drives the extreme specialization of a fig wasp genome. Genome Biology, 14, R141. (Protein structures prediction) 29.Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A. et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583-589. 30.Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G.R., Wang, J., Cong, Q., Kinch, L.N., Schaeffer, R.D. et al. (2021) Accurate prediction of protein structures and interactions using a three-track neural network. Science, 373, 871-876. 31.Pereira, J., Simpkin, A.J., Hartmann, M.D., Rigden, D.J., Keegan, R.M. and Lupas, A.N. (2021) High-accuracy protein structure prediction in CASP14. Proteins-Structure Function and Bioinformatics, 89, 1687-1699. 32.Marti-Renom, M.A., Stuart, A.C., Fiser, A., Sanchez, R., Melo, F. and Sali, A. (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct, 29, 291-325. (Pheromone molecules analysis and simulation) 33.Trott, O. and Olson, A.J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 31, 455-461. 34.T, S., C, R., L, M., L, Q. and Z, Y. (2021) Accelerating AutoDock VINA with GPUs. ChemRxiv. 35.O'Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T. and Hutchison, G.R. (2011) Open Babel: An open chemical toolbox. J. Cheminf., 3, 33. 36.Haddad, R., Khan, R., Takahashi, Y.K., Mori, K., Harel, D. and Sobel, N. (2008) A metric for odorant comparison. Nat. Meth., 5, 425-429. 37.Lovell, S.C., Davis, I.W., Arendall, W.B., 3rd, de Bakker, P.I., Word, J.M., Prisant, M.G., Richardson, J.S. and Richardson, D.C. (2003) Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins, 50, 437-450. 38.Bouysset, C. and Fiorucci, S. (2021) ProLIF: a library to encode molecular interactions as fingerprints. J. Cheminf., 13. 39.Naughton, F.B., Alibay, I., Barnoud, J., Barreto-Ojeda, E., Beckstein, O., Bouysset, C., Cohen, O., Gowers, R.J., MacDermott-Opeskin, H., Matta, M. et al. (2022) MDAnalysis 2.0 and beyond: fast and interoperable, community driven simulation analysis. Biophys. J., 121, 272a-273a. (Gene annotation) 40.Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V. and Zdobnov, E.M. (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31, 3210-3212. 41.Finn, R.D., Clements, J. and Eddy, S.R. (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res, 39, W29-37. 42.She, R., Chu, J.S., Uyar, B., Wang, J., Wang, K. and Chen, N. (2011) genBlastG: using BLAST searches to build homologous gene models. Bioinformatics, 27, 2141-2143. 43.She, R., Chu, J.S., Wang, K., Pei, J. and Chen, N. (2009) GenBlastA: enabling BLAST to identify homologous gene sequences. Genome Res, 19, 143-149. 44.Pertea, G. and Pertea, M. (2020) GFF Utilities: GffRead and GffCompare. F1000Res, 9. 45.Arai, M., Mitsuke, H., Ikeda, M., Xia, J.-X., Kikuchi, T., Satake, M. and Shimizu, T. (2004) ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability. Nucleic acids research, 32, W390-W393. 46.Tusnady, G.E. and Simon, I. (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics, 17, 849-850. 47.Käll, L., Krogh, A. and Sonnhammer, E.L. (2007) Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic acids research, 35, W429-W432. 48.Krogh, A., Larsson, B., Von Heijne, G. and Sonnhammer, E.L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol., 305, 567-580. (Data statistcs and web constructions) 49.Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K. and Madden, T.L. (2009) BLAST+: architecture and applications. BMC Bioinformatics, 10, 421. 50.Cao, Y., Charisi, A., Cheng, L.C., Jiang, T. and Girke, T. (2008) ChemmineR: a compound mining framework for R. Bioinformatics, 24, 1733-1734. 51.Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V. et al. (2011) Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825-2830. 52.Rego, N. and Koes, D. (2015) 3Dmol.js: molecular visualization with WebGL. Bioinformatics, 31, 1322-1324. 53.Ruiz-Moreno, A.J., Reyes-Romero, A., Domling, A. and Velasco-Velazquez, M.A. (2021) In Silico Design and Selection of New Tetrahydroisoquinoline-Based CD44 Antagonist Candidates. Molecules, 26. 54.Django HTTP server (v.3.2.5). https://www.djangoproject.com 55.Axios library. https://axios-http.com 56.MySQL database service. https://www.mysql.com Return Top |